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Allstraet-An infinitely long, axially compressed, circular cylindrical shell with an imperfection in the shape of
the axisymmetric classical buckling mode, undergoing steady or non-steady creep, is analyzed. The
axisymmetric problem is solved incrementally using nonlinear shell equations The ratio of the applied stress
to the classical buckling stress determines if the shell will collapse axisymmetrically or if it will bifurcate into
a nonaxisymmetric mode, and whether or not bifurcation will result in instantaneous collapse. The
bifurcation problem is formulated exactly and the initial postbuckling behavior is investigated via an
asymptotic elastic analysis, based on Koiter's general theory Numerical results are compared with available
experimental data.

NOTATION
E Young's modulus
v Poisson's ratio (taken as 1/3)
R cylinder radius
h wall thickness

X, Y axial and circumferential coordinates
c = [3(1- 1'2»)'/2

qo = (2cR/h)'/2
U, V, W axial, circumferential and radial displacements

IV initial radial displacement (imperfection)
<110 rotation of middle surface (a = 1,2)

Eo/J middle surface strains (/3 = 1,2)
Ko/J bending strains

u average axial stress
TU stress tensor (i, j = 1,2,3)
S'I stress deviator (= Til - h••Il'I)
J2 =!S'/Sq

Mo/J bending moments
NoIJ stress resultants

Qo transverse shear forces
'Iii elastic strains
'Iii crvP strains
ec = hil'lil
'Iu total strains (= 'Iii + 'Iii)
Ec uniaxial creep strain
F Airy stress function
t time

C;:~ creep terms (eqn 12)
x =XqolR
y = YqolR
w = W/R
Ii> = Wlh
u = Uqol2ch
v = Vqol2ch

,p. = <IIoqol2c
e./J = EO /JRl2ch
k./J =K.~2c

U'I = TQR!2cEh
m./J = M./JRlEh'
n./J =N.~Eh2

qo =QoR'/Eh'q.
EU = ."qR/2ch
f = Fq.'/Eh2R

k•• n, p creep parameters (eqn 1)
k"" m creep parameters (eqn 2)

tThis work was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-13-2416, and by the
Division of Engineering and Applied Physics, Harvard University.
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to. t" t2 time scales (eqn 7)
T = tlto

0'< I classical elastic buckling stress (= Eh/cR)
0'" critical bifurcation stress of imperfect elastic shell

,\ = 0'/0'<1

A.cr = fTa lUc;1
~ amplitude of buckling displacement

'\2 postbuckling coefficient (eqn 23)
a postbuckling parameter (eqn 26)
s circumferential wave number

!:J. average shortening per unit length
So prebuckling axial stiffness (eqn 25a)
S postbuckling axial stiffness (eqn 25b)

Operators
0., = ao/ax
O,y =ao/ay
(') = ao/at
o denotes average over tbe cylinder,

INTRODUCTION

Creep buckling, or creep collapse, of circular cylindrical shells is said to occur at a certain critical
time when the deformations, or deformation-rates, tend to infinity or exceed prescribed limits.
Depending on the applied stress buckling can also occur as the result of bifurcation into a
different equilibrium configuration which may, or may not, result in instantaneous loss of load
carrying capacity.

In most of the recent investigations of the creep buckling of circular cylinders the shells were
presumed to contain axisymmetric or nonaxisymmetric imperfections and the critical times at
which the deftections tended to infinity were calculated in a quasi-static manner[1-7]. Hoff [8, 9]
has reviewed most of this work.

One of the first attempts to account for bifurcation in an approximate way was made by
Samuelson [1]. Hoff[10, III has obtained approximate, explicit expressions for the critical
bifurcation time by combining his earlier results for a cylinder with an axisymmetric
imperfection[2] with the results of Koiter's bifurcation analysis [12] of a similar elastic cylinder.

Apparently Grigoliuk and Lipovtsev (see [13]) were the first to conduct a rigorous bifurcation
analysis of shells undergoing creep. Unfortunately their work, which was followed by a number
of Russian authors (see [14,15]), has so far been largely overlooked in the Western literature.
They recognized that bifurcation in creep is an instantaneous process which involves creep
constitutive terms only insofar as they inftuence the prebuckling state. They then formulated an
exact linear eigenvalue problem for the determination of the critical time at which bifurcation
first becomes possible. In [13] they apply this approach to a cylindrical shell with an axisymmetric
imperfection under axial compression, and to a perfect cylinder under a radial line load. Similar
approaches to bifurcation analysis have been reported by Storakers[16] and Bushnell[17], who
has assembled a general computer code for the analysis of shells of revolution.

In the literature the tacit assumption is usually made that bifurcation will result in
instantaneous collapse. Experimental evidence [10,19] and the results of the following analysis
suggest that this need not always be the case.

This investigation is concerned with the creep-buckling behavior of an infinitely long,
imperfect circular cylindrical shell under axial compression. Following the work on elastic
buckling of Koiter[12] and Budiansky and Hutchinson [20] the imperfection is taken in the shape
of the classical axisymmetric buckling mode. Attention is restricted to the case of an
"instantaneously" applied load which is subsequently held constant. The critical times at which
the shell buckles axisymmetrically or bifurcates into a nonaxisymmetric mode are calculated, and
the initial postbuckling behavior is investigated.

Using nonlinear shell equations the axisymmetric prebuckling problem is cast in incremental
form and solved numerically for steady as well as nonsteady creep constitutive properties. A
typical plot of the time-dependence of, say, the maximum radial displacement is given in Fig. 1.
The fundamental axisymmetric path (curve A) shows the instantaneous elastic contribution (We)
and the growth of the deftections due to creep. For nonlinear creep constitutive laws a finite
critical time Ta usually exists, in the neighborhood of which the displacements increase very
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T

Fig. 1. Typical plot of time dependence of the radial displacement w.
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rapidly. The growth of deflections is accompanied by an increase in circumferential stresses
which may bring about nonaxisymmetric bifurcation at the critical bifurcation time Te ~ Ta•

The bifurcation problem is formulated by making a standard perturbation expansion which
leads to an eigenvalue problem for the buckling mode and the associated eigenvalue Te• The initial
postbuckling stiffness is calculated via an asymptotic, quasi-static analysis which is based on
Koiter's general theory of initial postbuckling behavior[21]. The analysis reveals the stability of
the shell at the instant of bifurcation. If it is found to be unstable, dynamic snapping will occur (as
represented schematically by curve C in Fig. 1). If it is found to be stable then, initially at least,
the buckling shell still retains some load-carrying capacity and will continue to creep
quasi-statically (curve B).

Figure 2 gives an overview of the outcome of the analysis given in the following sections and
summarizes the numerical results for a particular case of steady power law creep. The ordinate is
the applied stress u divided by the elastic bifurcation stress Ucr of the imperfect shell. The
abscissa is U cr normalized by the elastic classical buckling stress Uel of the perfect shell. Each
curve in Fig. 2 corresponds to a constant value of nondimensional critical time T (which, as well
as further details, will be defined later). In Region I the shell does not bifurcate but buckles
axisymmetrically. In II it bifurcates nonaxisymmetrically at time T with stable initial postbuckling
behavior, whereas in III the postbifurcation behavior is unstable and at time T snapping occurs
simultaneously with bifurcation.

The analysis is followed by a review of available experimental results, particularly with
respect to the nature of buckling, and a comparison with the numerical results is made.

I AXISYMMETRIC ElJCKLING
n STABLE INITIAL POSTElJCKLING
mUNSTABLE "

STEADY CREEP n"3

1.Of-------,,....-----------.

.B
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.4
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Fig. 2. Critical times and initial postbucldingbehavioras afunction of the applied stress and the elastic buclding
stress.
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CONSTITUTIVE RELATIONS

In this study a uniaxial creep law of the power-law strain-hardening type [22J is chosen

(1)

The dot represents differentiation with respect to time, the subscript c denotes creep and the
temperature-dependent material parameters, kn, n, p are assumed constant. For p = 1, (1) reduces
to Norton's secondary creep law. A small-strain generalization of (1) is

(2)

where in this case <l>c = kmJ2
me/-v• In (2) 'ljij is the creep strain-rate tensor, Sij the stress deviator,

J2 the second invariant of S,j and ec the second invariant of the accumulated creep strain 1jij. Note
that (2) implies incompressibility and isotropy. Reduction of (2) to the uniaxial case (1) gives the
relations between the corresponding parameters, i.e. m =!(n -1) and km = kn3m+1241+pt/2.

Only elastic and creep strains are considered. The total strain rate can then be written in the
following form

(3a)

Inversion yields

(3b)

In (3) ,;t;jld and Jtijkl are the tensors of the elastic moduli and compliances. The tensors of the
creep terms are simply

4>", ~ 4><G<&.<I, +8,8.) - ~s..s,]}

c/Jijkl - .Pijmn <I>mnkl

(3c)

All fourth order tensors are symmetric in the following indices Alikl = Ajlld = Aklii•

Two-dimensional constitutive relations consistent with first order shell theory are obtained by
the usual assumption of a state of approximate plane stress at each point through the thickness.
This is equivalent to requiring that transverse shear strains vanish, i.e. 1/,,) =0 (a = 1,2), and that
the contribution of the stress perpendicular to the middle surface make only a negligible
contribution to the internal energy, i.e. Tn = O. Thus from (3b)

(4a)

where [23]

(4b)

Greek indices range only from 1 to 2. Consistent with the above assumptions e/ =

(1j~1)2 + (1/~2)2 + 1/~11/h + (1/~2)2 and J2 is taken to depend only on the in-plane stresses so that
J2 = HT:I +T;2 - TI I T22 +3T:2).

INITIAL CREEP INCREMENT

In the case of primary creep, incremental numerical calculations are complicated by the fact
that for t~ 0, the creep strain-rate (2) becomes infinite. One way of dealing with this problem is
to consider a small enough initial time increment 8t during which the initial stress state can be
assumed to remain constant. Then an analytical expression for the corresponding initial creep
increment 81/ft-8t) can be derived.

Note the identity l1ij = ecIN12Sii • Differentiation of ec = (hij1/ij)tf2 with respect to time and use
of (2) gives ec = kmJ2n12e/-P. Assuming a constant J2, integrating and using the initial condition
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ee(t = 0) = 0 one finds
(5)

Together with the initial elastic stress state and a suitably smallSt (5) gives starting values for 7/ij
and ee.

TIME SCALE

The critical time depends strongly on the structure, the material properties and the loading
conditions. In experiments reported in the literature it has been found to vary from a few minutes
to several weeks. The choice of an appropriate time scale is therefore important, particularly for
conducting an efficient numerical analysis. In this section three time scales are introduced and an
argument is made for one of them.

For a constant stress u the uniaxial creep law (1) can be integrated directly. Thus the time
needed to reach a certain strain E is

(6)

If a representative stress u and the associated strain E can be identified for a given problem then
the time resulting from (6) can be used as a reference time.

In the present problem the average axial stress is the natural choice for u. A particularly
useful time scale is the time to needed to reach a strain equal to the elastic strain E. = ulE, Le.

(7)

A different choice is the time t1 which it takes under a stress u to reach a strain Eel = uellE, where
Uel is the classical elastic buckling stress. With the use of the load-parameter A(= uluel) which
will be used throughout the paper one obtains tl = A-P • to. In Hoff's papers t l is called the "Euler
time". Finally, setting u = Uel and E = Eel in (6) gives t2=A.-Pto•

In the limit, as A -+ 0, critical times normalized by t2 are found to go to infinity, whereas, if
normalized by- t l , they go to zero. In contrast, normalization by to always yielded finite constant
values. Also, in the numerical calculations the time increments never had to be chosen larger than
unity, and T = tlto turned out to be the most convenient choice of nondimensional time for the
present study.

AXISYMMETRIC RESPONSE

Instantaneous elastic deformations
Consider an infinitely long imperfect circular cylindrical shell under axial compression. The

load, which must be smaller than the elastic bifurcation load, is to be applied "instantaneously",
but quasi-statically. In the present study it is subsequently held constant, although time-varying
loads could be considered without difficulty.

The imperfection is taken in the shape of the classical axisymmetric buckling mode [20]

w= -lcosx. (8)

Here wis the nondimensional radial displacement associated with the initial deflection, and lis
the initial imperfection amplitude divided by the shell thickness.

The analysis is made within the context of nonlinear Donnell-Mushtari-Vlasov shell
equations [24]. The usefulness of these equations has been questioned on the ground that creep
buckling is associated with the development of "large" deflections. As will be seen later, at small
imperfection levels, all relevant phenomena take place at deflections which are at most of the
order of the thickness, and thus lie well within the range of applicability of the theory.

The shell equations are used in nondimensional form. The notation is identical to the one
introduced in [20] and is given in the notation list. In conjunction with the time scales introduced
earlier, this nondimensionalization effectively eliminates most material constants, as well as
the radius-to-thickness ratio RIh from the equations, leaving only P, n, p and A as free
parameters.
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The initial response of the shell is elastic and with the imperfection shape (8) the nonlinear
shell equations can be solved exactly to give [12,20]

IIA 1A] 1We ==--~ -- cosx
c 1- A

nh == - (1 ~Jcos X

(9)

and similar expressions for the associated stresses, strains and displacements. The subscript (or
superscript) e denotes the elastic response at time t = O. Equations (9) are the initial conditions
for the creep problem.

Formulation of rate equations
The rate of the approximate two-dimensional strain tensor 7lall is given in terms of the rates of

the midsurface stretching strain Ball and bending strain Kall by

(10)

In (lO) z is measured along the outward normal. The usual definitions for the resultant stress
tensor Nail and the bending moment tensor Mall give

Here h is the thickness of the undeformed shell and the creep terms C~~ are given by

(I) _ E fhl2 A (i-I)

Call - 3(1- 112) -hl2 <PcTallZ dz (i = 1,2)

(11)

(12)

where fall = 3(1- II)Ta /! - (1- 211)Tyy15all•

The formulation of the rate equations is completed by differentiating the appropriate
equilibrium and strain-displacement relations [24] with respect to time. As discussed in more
detail in [23,25] the resulting linear incremental equations can be reduced to a set of six
first-order differential equations. The advantage of such a formulation is that it involves no
differentiation of terms resulting from the constitutive equations. Nondimensionalized and
written in matrix notation the equations take the form

Z,x+A·Z=p (13)

where Z == (rill' til, mil, Uh IV, ¢Jt). The column vector p depends on the creep terms (12) and the
matrix A is a function of Z.

Due to the symmetry of the problem about x = ± n7T (n = 0, 1, 2, ...) the analysis can be
restricted to the interval [0, 1f]. The appropriate boundary conditions at the two end points are
nil == -Ale, qt == lPl =0 and rill == 41 = ¢Jt == O.

Equation (13), together with the boundary conditions and the initial conditions (9), constitute
the full initial-boundary value problem for the axisymmetric response of the shell.

Equation (13) was solved by dividing the distance between 0 and 1f into N equal intervals, and
by replacing the derivative by central finite differences. This leads to a set of linear algebraic
equations in the variables Zi,m (where i denotes the spatial and m the time stations) which were
then solved by a modified version of Potters' method [26]. For more details the reader is referred
to reference [25].

The integral terms (12) which appear in the vector p (13) were evaluated numerically by
dividing the shell wall into M equal intervals and then using Simpson's rule. Trial calculations
showed that N == 28 and M == 10 provided sufficient accuracy.

Time integration was performed simplyby advancing the solutionfrom time Tm to Tm +1 according
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(14)

In regions of rapidly changing t a mid-point Runge-Kutta scheme was used, and twas
calculated at 'Tm +O{2) = 'Tm +!ll'Tm by quadratically extrapolating the components of A(Z) in (13) to
'Tm+O{2).

Repeated solution of (14) gives the incremental time history of the axisymmetric response
(curve A in Fig. I). In all cases studied the axisymmetric critical time 'To was finite for nonzero l.

Hoff [2, 8, 9,11] gave a closed form expression for the critical time 'To of an infinite cylinder
with an axisymmetric imperfection whose wavelength differs only slightly from (8). The
expression is derived for steady creep (n = 3) on the basis of a double-membrane model, and
elastic strains are accounted for by a correction factor. In the present notation and with to (7) as
time scale it reads

[I- A] [ (I - A)2]
'To = 0.294 -A- In I +0.328 T .

A comparison with numerical results will be made in a later section.

BUCKLING AND POSTBUCKLING BEHAVIOR

(15)

Bifurcation
Initially, as time increases from 'T = 0, the fundamental solution is unique. Suppose that at a

certain time 'Te =5 'To the shell reaches a state in which this uniqueness is lost. For constitutive laws
which involve creep in a manner such as (3b) it can be shown, within the context of Hill's general
theory of bifurcation and uniqueness of incremental boundary-value problems [27, 16], that the
creep terms in the incremental relationship, i.e. the second term in (3b), do not enter into the
bifurcation problem. Thus the bifurcation problem in creep involves viscous terms only insofar
as they determine the current state of stress and deformation of the fundamental mode. In the
present case it leads to a linear eigenvalue problem for the eigenmode and the associated
eigenvalue 'Te• The formulation of the bifurcation problem is given in the following section,
together with the asymptotic postbuckling analysis.

Postbuckling
The important question is now whether, following bifurcation, the shell will snap dynamically

or whether it will continue to creep quasi-statically. In other words, whether the initial
postbuckling behavior is stable or unstable.

The analysis of this aspect of the problem is based on Koiter's general theory of initial
postbuckling behavior [12, 21], and the versions of this theory presented by Budiansky and
Hutchinson[28] and Fitch[29]. To determine whether or not bifurcation is associated with
snapping we examine if, given the state of stress and deformation at bifurcation, the shell is able
to support an additional load increment llA, which is "instantaneously" (but quasi-statically)
applied. Thus we calculate the initial slope of the static load-deflection equilibrium path in the
postbuckling regime associated with the additional elastic response. If this slope turns out to be
zero or negative the creeping shell will not be able to support the constant load and will collapse
dynamically (represented schematically by curve C in Fig. I). If, on the other hand, the initial
slope is positive this analysis does not describe the actual behavior of the creeping shell under
constant load. It only indicates that it retains the ability to carry the applied load after bifurcation
and will, initially at least, continue to creep quasi-statically (represented schematically by curve B
in Fig. 1). Thus, the initial slope of the static load-deflection curve, calculated on the basis of
additional elastic responses, determines the stability of the creeping shell under constant load at
bifurcation. A somewhat similar approach to the creep buckling of imperfect columns was used
in [31].

As in [20, 28, 29] the following series representation of the initial postbuckling behavior is
used, where the amplitude of the buckling mode ~ is the independent expansion parameter

(16)
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(17a)

(17b)

In (17a) f is the nondimensional Airy stress function. The series for the other variables are
analogous [20]. The first column in (17a) represents the quantities of the fundamental state and the
subscript (or superscript) c denotes evaluation at 'Tc • The variables in the second column are
associated with the elastic increment of the fundamental mode due to AA. Terms of order ~ are
the solution to the bifurcation problem, and terms with superscripts larger than one are higher
order contributions.

In general multiple buckling modes w(l) are possible, but in the present case w(1) will be unique
apart from an arbitrary amplitude. It is taken to be orthogonal to the higher order terms and
normalized in the folIowing way

Iw(l)/max = I and JJw(l)wU) dx dy = 0 for jf; l. (18)

Since the postbuckling behavior must be independent of the sign of the buckling mode one finds
AI = O. Then, consistent with the previous discussion, it is the sign of A2 which determines the
stability of the shelI and snap-buckling can be expected at 'Tc if A2:s O.

The formulation is completed by representing the barred quantities in (18) by a Taylor series
about AA = 0, i.e.

{ -} {-'} I {-II}~ =AA ~, +-(AA)2 ~, + ...
f f ,H ~O 2 f AA ~O

(19)

where primes denote differentiation with respect to AA.
Substitution of (17a) and (19) into the complete shell equations [24] and use of elastic

constitutive relations except for the terms labeled c results in a sequence of linear
Karman-DonnelI-type equations, of which the folIowing are needed in the analysis

Iii'.xxxx + f'.x: + 2AcIii'. xx = -2(w
C

+ Iii).xx} (20)

I',xxxx - w',xx == 0

V4
w(1) + 2A w(1) + 1(1) - 2c(wC+ Iii) t l

) - 2cnC
w(1) = O}C ,xx J ,xx ,xx ,yy 22 .yy

(21)
V4fl) - w(l) +2c(wC+ Iii) W(l) = 0,xx ,xx .yy

V4W(2)+2Acw~~+r;~-2c(wC+ 1ii).xxf;;-2cn~2w.~;= 2c,p(fI), w(l) }

V4r'- w~~+2c(wC+ w).xxw.~; = - c,p(w(l), W(I» (22)

where

,pcp, Q) = p.xxQ,yy +p.yyQ.xx - 2P.xyQ.XY·

Equations (21) constitute the homogeneous eigenvalue problem for bifurcation referred to
previously, and 'Tc is the lowest value for which the associated solutions are nontrivial. The
critical bifurcation time 'Tc enters implicitly through the critical axial bending strain - w~.u and the
critical circumferential stress n~2 of the fundamental solution. The same holds for the general
buckling problem within the context of DonnelI-Mushtari-Vlasov theory. It can be shown[30]
that the curvature tensor - W~"II and the tensor of the stress resultants n~1I are the only quantities
of the fundamental state (including the creep deformations) which have an influence on
bifurcation. This point will be important in the context of approximate buckling criteria, which
will be discussed later.

As mentioned earlier AI vanishes and the general expression for the postbuckling coefficient
A2 becomes [29, 20]

(23)
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where

Q(L, M, N) == L,yyM,xN,x +L,xxM,yN,y - L,xy(M,yN,x +M,xN,y)

and () represents averaging over the shell.

Postbuckling parameter a
Following[20] a more convenient measure of the change in overall stiffness due to bifurcation

is employed. The average axial shortening per unit length is given by

(24)

Expansions (17a) and (19) lead to a similar series for t:J.. Introduce now the prebuckling axial
stiffness So of the shell in the fundamental mode at Te

(25a)

where if == t:J.'\O'eh and the initial postbuckling stiffness of the buckled shell S, also at Te,

(25b)

The initial postbuckling parameter a is now defined as [20]

(26)

Its values range from +1 to -1. A graphic interpretation of a is given in the lower half of Fig. 3.
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Fig, 3. Buckling and postbuckling of imperfect elastic cylindrical shells under axial compression.
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Note that while A2 and a do not measure precisely the same characteristics, they always have the
same sign.

APPROXIMATE SOLUTION

Equations (20)-(22) will now be solved by first approximating the terms nh and w~xx and then,
following Koiter[l2], using a Galerkin procedure.

The numerical calculations showed that throughout the deformation history n22 and W.xx

remain essentially sinusoidal and that only their amplitudes change with time. To simplify the
analysis we use the following approximate representation

n22('T)=-l[1~A](I+'T/('T»COSX1
w.xA'T)=g[I~J(1+W('T»COSX J.

(27)

The functions TJ and w depend on time only and account for the effects of creep. For 'T = 0 they
vanish and eqns (27) reduce to the elastic case (9). Their values can be calculated at each time
step from the numerical solution to the axisymmetric problem discussed above. For convenience
let

K~x = _(we + w).xx = - Kc cos X and n~2 = -nc cos x

where Kc and nc follow from (27).
With the use of (27) the solution of (20) is

(28)

w' = -A' cosx

where

2

l' = - L +A' cos x
2c

(29)

The solution of (21) proceeds in a way similar to the one given by Koiter[12]. He considers a
buckling pattern of the form

w(l) = ~ Cf') cos [!(2i - I)X] cos sy
j~1 2

(30a)

and performs the analysis using the full series (30a). His expression for the upper bound to the
critical bifurcation stress is then obtained by setting all coefficients Cf'), except the first, equal to
zero. Here we also retain only this first term and, using (18), seek a buckling solution of the form

X
w(1) = cos 2cos sy. (30b)

Substitution of (30b) into the compatibility equation of (21) gives a differential equation for (I)
with the following exact solution

(30c)

where

and
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Substitution of (30b,c) into the equilibrium equation and use of a Galerkin procedure gives a
condition for bifurcation

where

D = (l - Ac)2 [ ao2 + ~~2 - 8Ac] - iA= 0

A = 16CS2
{ (1- Ac)[Ac(1 + 1/c) + ~2(1 + wcAcl] -16cs

2i(1 + wcAc)2[al02 + a
l
/ n·

(31

For w = 1/ = 0 (31) reduces to an equation which relates the critical bifurcation stress to the
imperfection level given by Koiter[12]. In the creep case Ac is prescribed and D is a function of
time T and the wave number s. The critical time Tc is the smallest value of T for which D first
vanishes for all possible integer values of s . qo[20]. The actual zeros of D were found by
calculating its value at each time step and treating s as a continuous variable, since for thin shells
the critical values of sqo are large compared to one.

Consider now the limiting case of a perfect shell. (This problem received much attention in the
1950's and 1960's, but the results were not conclusive.) Setting i = 0 in (31) gives an expression
which does not contain creep terms and whose solution is Ac = 1 and Sc = 0.5 (where Sc is the
value that minimizes Ac ). But these are just the critical values for nonsymmetric bifurcation of a
perfect elastic shell. This indicates that a perfect shell undergoing creep will not bifurcate at loads
below the classical buckling load.

The boundary value problem (22) is again solved approximately using a Galerkin procedure.
In [12] Koiter does not consider postbuckling. Details of the following solution procedure are,
however, quite similar to those given in [12], so that they need not be repeated here. The
functional form of the operators '" in (22) suggests solutions of the form

W(2) = C20 + C21 cos X+ C22 cos 2x +co:2sy~ C?) cos jX}

r) = D21 cos X+D22 cos 2x +cos 2sy L D?) cos jx .
j-O

(32)

In addition to (22) the solutions (32) must satisfy the condition of single-valued
circumferential displacement

,CR
" (aD10 ayjdY=O. (33)

Substitution of (32) into the compatibility equation of (22) gives an expression relating CF) to
DF). Use of this expression, substitution of (32) into the equilibrium equation and again
application of the Galerkin procedure leads to linear sets of equations for the coefficients

2

(1- 2Ac )C21 - D 21 = c; (D1(I) +D 2(1»

4(2 - AclC22 - 2D22 = cs 2
D 2(1)

I 2L (a C<2) + f3 D(2» = - ££
1__1 0.1 I 0,1 I 4

1 2

~ ('Y C<2) + /j D(2» = ££D (I)
I~I 0,1 I 0,1 I 2 I

1

L [a_I._I+IC~21+1+ (3-I,-I+ID~I+I+ al.I+ICI~,+ f3t.1+IDI~,] = 0
1--1

I

~ [ C(2) +" D(2) + r«2) + " D(2)] - 2 2D (I)
~ 'Y-I.-I+/ -1+/ U_I,_1+1 -1+1 'YI,I+IL-i+/ UI,I+I 1+/ - CS 2

1=-1

(34a)

(34b)

(34c)

(34d)

(35a)

(35b)

(35c)

(35d)
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HANS OBRECHT

I

L [a2,2+/C1~/ + ,B2,2+/D1~,] = 0
1=-1

I 2

~ [ C(2) + " D(2)] cs D (I)
/~, 'r2,2+/ 2+/ U2,2+/ 2+/ = T 2

,t, [aq,q+lC~22, + ,Bq,q+,D~21,] = o}
, q~3

L ['rq,q+,C~22, + 8q,q+,D~22,] = 0
1=-1

(35e)

(35f)

(36a)

(36b)

aq,q±l = -4cs2Kc

,Bq,q±l = 0

'rq,q±l = - 4cs2nc

8q,q±1 = 4cs2Kc

aq,q = q2

,Bq,q = (q2 +4s2f
'rq,q = (q2 +4s2f - ZAcq2

8q ,q = _q2,

The negative values for I in (35) and (36) result from the products of trigonometric terms in (22),
Also, due to the presence of cos (- x) and cos 2x, as well as constant terms, the cases q = 0, I, 2
need special attention in the Galerkin procedure.

Condition (33) leads to C20 = -(cs 2{4) and two equations which are identical to (34a,b).
Equations (36) constitute a banded, infinite system for CF), D/2

). By an argument similar to the
one given in [12] it can be shown that for q~ 00 eqns (36) reduce to pairs of homogeneous
equations with trivial solutions. This provides the justification for truncating the series in (32).
Here we set CF) =DF) =0 for j ~ 3. The remaining six eqns (35) are then solved numerically by
Gaussian elimination.

Now A2 can be expressed in terms of the coefficients of (w', 1'), (w(l), tl) and (w(2), r». We
find

A2 _ 6s 2D21 +DO(2) +2D/')(C21 +Co(2) +2D2(1)[C21 +4C22 +3(C/2)+ C2
(2»]

1- 112 - -c 1+2cs2A'[2(D1(l) +D2(1»-l]

and the postbuckling parameter a becomes

(37)

(38)

By setting wand 71 in all of the above expressions equal to zero the solutions for a corresponding
elastic shell are recovered.

RESULIS AND DISCUSSION

Elastic results
In Fig. 3 the results for the critical bifurcation stress of an elastic shell are plotted as a

function of the imperfection level t, which is taken to vary from 0 to 00. The upper curve is the
same as the one in [12], except that Koiter's numerical values were calculated with a Poisson's
ratio of 0.272, rather than our value of 1/3. It also corresponds to one of the curves in [20] and
shows clearly that small imperfections cause a significant reduction of the bifurcation stress. The
lower half of Fig. 3 shows that for t less than about 0.4 (i.e. Acr greater than about 0.33) a is
negative and the initial postbuckling behavior of such a shell is unstable. For larger imperfection
levels a becomes positive. In that range the postbifurcation is stable and loads above Acr can be
sustained, i.e. bifurcation does not result in instantaneous loss of load-carrying capacity.

A comparison with the numerical results obtained from an exact buckling and postbuckling
analysis [20] (dashed curve) shows good agreement. The values of Acr agree to within 1%. For a
the approximate calculation gives slightly lower values up to approximately i = 1. For larger
values of t the discrepancy is insignificant.
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Creep results
Figures 4 show the dependence of the respective critical times on the applied load for various

imperfection levels. Consider the curve for l = 0.1 in Fig. 4(a). The dashed branch gives the critical
time 'Ta which would be obtained by a purely axisymmetric analysis. The solid branch gives the
critical time Te for bifurcation buckling. At one point, marked by a solid dot, the two curves
merge. It denotes the load level below which no bifurcation will occur and the shell will always
collapse axisymmetrically. This transition point existed for all imperfections and creep
parameters investigated. Figures 4(b),(c) show similar plots for different parameters of steady and
nonsteady creep.

Figure 5(a) shows the relationship between the ratio Te/Ta and A for steady creep (n = 3). It is
similar to the ones given by Hoff in [9, 11]. Plots of this kind can be useful in estimating the
critical bifurcation time if an estimate of the axisymmetric critical time is available. From Fig. 5(b)
it is seen that, except for relatively large imperfections, Te/Ta is almost independent of l and is,
for all practical purposes, a function of AlAcr only.

In Fig. 6 our numerical values for the axisymmetric critical time 'Ta are compared with those
obtained using Hoff's approximate expression (15). (Recall that the wavelength of the
imperfection used by Hoff differs slightly from the one used here.) It is seen that (15) predicts the
overall trend but generally overestimates the critical times, especially when A is small.

Results of the postbuckling analysis are shown in Fig. 7 where the postbuckling parameter a
(26) is plotted directly as a function of A. Consider now Fig. 7(a). First note the dashed curve which
represents the elastic results and is obtained from the bottom half of Fig. 3 by eliminating t It
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Fig. 4(a). Critical times for imperfect cylindrical shells under axial compression.
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shows the transition from the unstable to the stable postbuckling behavior at a value of A of about
0.33. The solid dot which terminates the curve at about A = 0.1 corresponds to the limit value for
t ~ 00. The creep results for various imperfection levels appear in Fig. 7(a) as solid
curve-segments. On the left, each starts with a dot at the value of A below which the shell buckles
axisymmetrically (see Figs. 4), and terminates on the elastic curve at the respective value of Au
(Fig. 3). The composite picture shows clearly that, as far as initial stability or instability is
concerned, the postbuckling behavior is strikingly similar to that of an elastic shell and depends
essentially only on A. The transition value between the stable and unstable regions is always
approximately A = 0.3.

Note from Fig. 3, that for shells with t greater than about 0.46 the elastic critical load
parameter ACT is smaller than the transition value 0.3. Such shells will have stable initial
postbuckling behavior. Note also that a has the largest positive values for small A. Whereas for
an elastic shell this means "more" stability, the same is not necessarily true when the shell
creeps. This becomes clear from Fig. 5(a). In the neighborhood of A = 0.1 the ratio Tc/Ta is close to
1. Thus bifurcation occurs in a range of rapidly increasing displacements, and, in spite of a
positive postbuckling stiffness, collapse can be expected shortly after bifurcation.

The same applies to reasonably perfect shells with t less than about 0.1. For this case Fig. 5(a)
reveals that A < 0.3 corresponds to Tc ~ 0.8Ta• This means that during a test an observer will
probably notice little difference between dynamic snapping and "stable" bifurcation during the
phase of rapidly increasing overall displacements. According to this analysis, stable bifurcation
and prolonged deformations in the buckled shape would most likely be observed for imperfection
levels of about half the thickness (Fig. 5a). The expected creep life would then, of course, be
considerably shorter.

Figures 7(a)-(c) show that the main features of the postbuckling behavior are unaffected by the
choice of creep parameters.

In the literature it is generally assumed that bifurcation is synonymous with collapse. It was
variously presumed that shells with large imperfection wavelengths [4,8], or with a large value of
R/h [18, 3] and/or a moderately high stress level [3] were more likely to bifurcate and collapse. In
contrast this analysis indicates that the nature of buckling is completely determined by the value
of A and that R/h plays a role only insofar as it influences the value of A for a given axial stress a.

The previous results are summarized in Fig. 2 which has already been explained in the
introduction. It is a crossplot of the results of Figs. 4(a) and 7(a). The imperfection level has been
eliminated and the critical time is directly related to the applied stress a and the static buckling
stress au of the imperfect elastic shell. If it is assumed that the effect of the imperfections can be
judged by the extent to which they reduce the static elastic buckling strength, then plots like Fig.
2 have general validity and ACT = aC,/aCl can be an experimentally or analytically obtained value,
or simply a static reduction factor. This would help to eliminate the need for a large number of
creep tests.

Plots for the critical circumferential wave number s are not given here. It is only mentioned
that it is either close to, or-sometimes considerably-larger than, that of the corresponding
elastic shell. Its value decreases with decreasing A and/or increasing imperfection amplitude.

The close similarities in the buckling behavior of elastic shells and shells undergoing creep
have led to approximate bifurcation criteria which are most often based on the assumption that
their respective critical radial displacements are identical[ll]. It is presumed that the effect of
creep is simply to cause the growth of imperfections. This viewpoint neglects, however, the fact
that these "new imperfections" are not stress free, and that various deformation histories may
produce quite different prebuckling states. In addition, as was mentioned earlier, it is not the
prebuckling-displacement, but the curvatures and in-plane stresses, which enter into the buckling
problem. Thus a critical-displacement criterion is somewhat arbitrary if the relationship between
these quantities is not unique, as is the case in the present creep problem.

This is confirmed by the results shown in Figs. 8. In Fig. 8a the maximum radial displacement
w at bifurcation is plotted as a function of A. The dashed curve shows the same quantity for an
elastic shell subjected to the critical bifurcation stress aCT' At A = 1 we have w = II/e (see eqn (9».
Figure 8a shows clearly that a critical-displacement criterion leads to very conservative
estimates, except for relatively large imperfections. Figure 8b gives the values of the maximum
compressive circumferential stress n22 at bifurcation. The dashed curve again represents the
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Fig. 8(a). Critical radial displacement as a function of the applied stress.
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Fig. 8(b). Critical compressive circumferential stress as a function of the applied stress.

critical values for an elastic shell. In this case agreement is much better and Fig. 8(b) yields the, not
unexpected, result that the critical circumferential stresses at bifurcation are very nearly equal. An
approximate bifurcation criterion based on a critical stress might therefore be expected to give
better estimates of the critical time. As in Fig. 8(a) major discrepancies exist around A = 0.1. This
does not, however, affect the usefulness of such a criterion because in this range bifurcation almost
coincides with axisymmetric collapse as discussed above. The results for different values of nand
p are quite similar and not given here.

The results of the preceding analysis are qualitatively, and to some extent quantitatively,
confirmed by experiments. In tests, metal specimens are usually enclosed in heavily insulated
furnaces. They are rarely under continuous observation, and so far the actual process of
bifurcation has rarely been observed directly. Samuelson[18] took high-speed photographs which
suggest that bifurcation is associated with collapse. But to date only Baranov and Morozov [19]
have given an extensive and detailed description of their observations of the buckling behavior of
relatively thin aluminum cylinders (Rlh = 116-197). They note that A plays an essential role and
report three different kinds of buckling and postbuckling behavior. For a Poisson's ratio of 1/3
they observed that for A> 0.32 bifurcation resulted in sharp snap-through behavior and a
simultaneous drop in the applied load, i.e. unstable behavior. In an intermediate range
(0.32> A> 0.14) they report the formation of circumferential buckles, followed by an increase in
the rate of deformation and ultimately collapse, i.e. apparently initially stable postbuckling.
Finally, for A< 0.14 purely axisymmetric buckling was observed. These observations are in
complete agreement with the present analysis.
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A quantitative comparison of the critical times poses certain problems, since most test reports
give critical times but few list all relevant material parameters. Furthermore, as is the case in
most shell tests, the magnitude and shape of the imperfections are unknown, and the critical
times are usually collapse times. In spite of these qualifications it is felt that a comparison is of
value if it can show at least qualitative agreement.

In many respects Samuelson's results [18] are the most complete and they will be used here.
The critical times of [18] are nondimensionalized, using the given values n := 5.8 and n = 4.75. For
va value of 1/3 was assumed and, to be consistent with Samuelson's assumptions, p was taken
equal to 1, although his creep curves indicate that primary creep was always present. The actual
critical times varied from 6 to 27,000 min whereas with our nondimensional time parameter they
range from 0.1 to 5.

A comparison is now made on the basis of the numerical results for n = 5, p ;:;: 1 and n == 5,
p :;;;: 2.5. The experimental results are plotted in Fig. 9 along with the curves from Figs. 4(b),(c) for a
very small and a moderate imperfection level, (i :;;;: 0.01 and i:;;;: 0.1), which presumably represent
the range of imperfections, including the effects of the edge disturbance. Considering that creep
test results usually show a large amount of scatter the agreement is quite good. For values of "
below the dotted lines labeled I (n :;;;: 5, p :;;;: 1) and II (n:= 5, p :;;;: 2.5) the analysis predicts
axisymmetric buckling. Since the shells which buckled axisymmetrically lie in this range, on this
point too, the analysis is in agreement with the test results.
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Fig. 9. Comparison with experimental results. (Samuelson [18l).

Samuelson does not mention stable postbuclding behavior. Instead, his high-speed
photographs suggest that bifurcation is associated with collapse. From the standpoint of this
analysis it can only be said that for n =5, p := I, and the probable imperfection values, the range
of A in which prolonged postbuclding deformations can be expected is quite small, and it is
probably quite difficult to distinguish between bifurcation and collapse.
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